The Impact of Artificial Intelligence on Learning: An Analysis Based on Teachers' Experiences

Main Article Content

Tubay Lozano Tubay Lozano
Naranjo Sánchez Naranjo Sánchez

Abstract

Artificial intelligence (AI) has begun to transform various fields, and education is no exception. This paper analyses the impact of AI on learning, focusing especially on the experiences of teachers in the basic general education system. The research focuses on assessing how teachers incorporate AI tools into their pedagogical practices, the barriers they face and perceptions about the potential of these technologies to improve teaching-learning processes. Through a mixed approach, quantitative and qualitative data are collected that allow exploring teachers' attitudes, required digital skills, use, and impact of AI in the classroom. The results show that AI offers benefits such as personalizing learning and optimizing pedagogical processes. This study highlights the importance of strengthening the technological training of educators and the need to create educational policies that encourage the use of AI. Finally, it is concluded that, for AI to be successfully integrated into education, a comprehensive approach is needed that includes ongoing training, institutional support, and technological improvement in education to expand the scope of AI use to students in basic general education and high school.

Article Details

Section

Artículo Científico

How to Cite

The Impact of Artificial Intelligence on Learning: An Analysis Based on Teachers’ Experiences. (2025). Revista Científica Interdisciplinaria Investigación Y Saberes, 15(3), 13-37. https://doi.org/10.53887/642x1226

References

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of computational thinking. Proceedings of the 2012 Annual Meeting of the American Educational Research Association (AERA), Vancouver, Canada. https://web.media.mit.edu/~kbrennan/files/Brennan_Resnick_AERA2012_CT.pdf

Carbonaro, M., Szafron, D., Cutumisu, M., & Schaeffer, J. (2020). Teaching computer programming in elementary schools: Challenges and pedagogical implications. Computers in Human Behavior, 112, 106467. https://doi.org/10.1016/j.chb.2020.106467

Del Olmo Muñoz, J., Casado Muñoz, R., Sánchez Mendiola, M., & Domínguez-Garrido, M. C. (2025). Evaluación del pensamiento computacional en primaria: un estudio de caso con rúbricas. Revista Electrónica de Investigación Educativa, 27(1), 1–20. https://doi.org/10.24320/redie.2025.27.e01

Gutiérrez-Aguilar, T. (2024). Pensamiento computacional en la educación básica: estrategias lúdicas y desarrollo cognitivo. Revista Horizontes, 8(30), 78–95. https://doi.org/10.33996/horizontes.v8i30.1278

Guzmán, D., & Páez, A. (2021). Experiencias de pensamiento computacional en zonas rurales de América Latina: una revisión crítica. Revista Iberoamericana de Educación Digital, 6(2), 45–62. https://doi.org/10.35659/rived.2021.6.2.45

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking through programming: What is next for K-12?. Computers in Human Behavior, 41, 51–61. https://doi.org/10.1016/j.chb.2014.09.012

Martínez, L. (2022). La enseñanza del pensamiento computacional desde la educación inicial: desafíos y propuestas. Revista Colombiana de Educación, 85(2), 140–162. https://doi.org/10.17227/rce.num85-17880

Paraskevopoulou-Kollia, E. A., & Fragkou, P. (2025). Teaching computational thinking in early childhood education: A systematic review. Education Sciences, 15(1), 56. https://doi.org/10.3390/educsci15010056

Perea, A. (2023). Implementación del pensamiento computacional en primaria mediante programación con bloques. Revista EDUCARE, 27(3), 201–219. https://doi.org/10.15359/ree.27-3.12345

Quiroz-Vallejo, L., Guerrero-Rodríguez, J., & López-Cabrera, E. (2021). Pensamiento computacional en niños y jóvenes: una revisión sistemática de experiencias en América Latina. Revista Mexicana de Investigación Educativa, 26(90), 1123–1145. https://www.comie.org.mx/revista/v1/index.php/educacion/article/view/1290

Román-González, M., Pérez-González, J.-C., & Jiménez-Fernández, C. (2017). Which cognitive abilities underlie computational thinking? Criterion validity of the Computational Thinking Test. Computers in Human Behavior, 72, 678–691. https://doi.org/10.1016/j.chb.2016.08.047

Silva, G. R., Araujo, J. A., & Andrade, J. M. (2021). Aplicaciones móviles para el desarrollo del pensamiento computacional en primaria. Revista Iberoamericana de Tecnología Educativa, 20(2), 55–70. https://doi.org/10.17398/1695-288X.20.2.55

Tang, X., Yin, Y., Lin, Q., Hadad, R., & Zhai, X. (2020). Assessing computational thinking: A systematic review of empirical studies. Computers & Education, 148, 103798. https://doi.org/10.1016/j.compedu.2019.103798

UNESCO. (2023). Computational thinking and programming in the curriculum: Policy and practice in Latin America. https://unesdoc.unesco.org/ark:/48223/pf0000389654

Voogt, J., Fisser, P., Good, J., Mishra, P., & Yadav, A. (2015). Computational thinking in compulsory education: Towards an agenda for research and practice. Education and Information Technologies, 20(4), 715–728. https://doi.org/10.1007/s10639-015-9412-6

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35. https://doi.org/10.1145/1118178.1118215

Similar Articles

You may also start an advanced similarity search for this article.